高等数学常用三角公式
它有六种基本函数(初等基本表示):
函数名 正弦 余弦 正切 余切 正割 余割
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 vercosθ =1-sinθ
同角三角函数间的基本关系式:
·平方关系:
sin^2(α) cos^2(α)=1
tan^2(α) 1=sec^2(α)
cot^2(α) 1=csc^2(α)
·积的关系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函数恒等变形公式
·两角和与差的三角函数:
cos(α β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α β)=(tanα tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1 tanα·tanβ)
·辅助角公式:
Asinα Bcosα=(A^2 B^2)^(1/2)sin(α t),其中
sint=B/(A^2 B^2)^(1/2)
cost=A/(A^2 B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=正负√((1-cosα)/2)
cos(α/2)=正负√((1 cosα)/2)
tan(α/2)=正负√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2
cos^2(α)=(1 cos(2α))/2
tan^2(α)=(1-cos(2α))/(1 cos(2α))
·万能公式:
sinα=2tan(α/2)/[1 tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α β) sin(α-β)]
cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α β) cos(α-β)]
sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]
·和差化积公式:
sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]
cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]
高等数学通量计算公式
高等数学中的通量计算公式通常与微积分学中的积分和微分有关。通量通常用于描述单位时间内通过某一曲面的流量,例如电流、热量、质量等。
以电流为例,通过某一曲面的电流可以用以下公式计算:
I = nqvA
其中,I表示电流,n表示单位时间内通过曲面的粒子数,q表示每个粒子的电荷量,v表示粒子在曲面上的速度,A表示曲面的面积。
这个公式可以用来计算单位时间内通过某一曲面的粒子数量,从而得出电流的大小。类似地,其他物理量的通量也可以用类似的方法计算。
高数重要不等式公式是什么
高数中的重要不等式公式有以下几个:
1. 三角不等式:对于任意两个实数 a 和 b,有 |a+b| ≤ |a| + |b|。
2. 平均不等式:对于任意 n 个非负实数 a1, a2, ..., an,有 AM ≥ GM ≥ HM,其中 AM、GM、HM 分别代表算术平均、几何平均和调和平均。
3. 柯西-施瓦茨不等式:对于任意 n 维实向量 (a1, a2, ..., an) 和 (b1, b2, ..., bn),有 (a1b1 + a2b2 + ... + anbn)² ≤ (a1² + a2² + ... + an²)(b1² + b2² + ... + bn²)。
4. 马尔可夫不等式:对于任意非负的随机变量 X 和非负实数 a,有 P(|X| ≥ a) ≤ E(X)/a,其中 E(X) 表示 X 的数学期望。
5. 切比雪夫不等式:对于任意随机变量 X 的 k 阶矩和非负实数 a,有 P(|X - E(X)| ≥ a) ≤ Var(X)/a²,其中 Var(X) 表示 X 的方差。
6. 牛顿-莱布尼茨公式:对于任意可导函数 f(x) 和一个连续函数 F(x),有 ∫[a,b]f(x)dx = F(b) - F(a),其中 [a, b] 表示区间 [a, b] 上的积分。
注:以上公式仅列举了一部分高数中的重要不等式公式,还有其他的不等式公式也是高数中的重点内容,需要具体根据教材或课程要求来学习。
相关问答
1.请问高等数学中常见的三角函数公式有哪些呢?
2.我想学习高等数学的三角公式大全,有哪些网站或者书籍推荐吗?
3.在学习高等数学的过程中,如何快速记忆和运用三角公式呢?
4.在高等数学中,正弦、余弦和正切函数的公式分别是什么?能简单介绍一下吗?
本文来自作者[不英]投稿,不代表汉港号立场,如若转载,请注明出处:https://shcomm.cn/zhishi/202410-1238.html
评论列表(4条)
我是汉港号的签约作者“不英”!
希望本篇文章《高等数学常用三角公式 高等数学公式大全》能对你有所帮助!
本站[汉港号]内容主要涵盖:百科大全,生活小常识,经验分享,热点知识
本文概览:高等数学常用三角公式它有六种基本函数(初等基本表示):函数名 正弦 余弦 正切 余切 正割 余割正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余...